LIVRES NUMÉRIQUESJEUNESSEBÉBÉJEUX, JOUETSPAPETERIECADEAUXDIVERTISSEMENT


Message Important
Le site sera temporairement en maintenance, pour une mise à jour. Ceci afin de mieux vous servir.
Heure de maintenance prévue : 10:30 pm

Important message
The site will be busy updating the store for you and will be back shortly.
Scheduled maintenance : 10:30 pm
Multi-Agent Reinforcement Learning: Foundations and Modern Approaches - STEFANO V ALBRECHT & AL

Multi-Agent Reinforcement Learning: Foundations and Modern Approaches

STEFANO V ALBRECHT & AL

 
86,00 $

Livre en anglais
Feuilleter Feuilleter
Sur commande : 2 à 4 semaines
Quantité
Ajouter à ma liste de souhaits
Non disponible en succursale
EN SAVOIR PLUS Résumé

The first comprehensive introduction to Multi-Agent Reinforcement Learning (MARL), covering MARL’s models, solution concepts, algorithmic ideas, technical challenges, and modern approaches.

Multi-Agent Reinforcement Learning (MARL), an area of machine learning in which a collective of agents learn to optimally interact in a shared environment, boasts a growing array of applications in modern life, from autonomous driving and multi-robot factories to automated trading and energy network management. This text provides a lucid and rigorous introduction to the models, solution concepts, algorithmic ideas, technical challenges, and modern approaches in MARL. The book first introduces the field’s foundations, including basics of reinforcement learning theory and algorithms, interactive game models, different solution concepts for games, and the algorithmic ideas underpinning MARL research. It then details contemporary MARL algorithms which leverage deep learning techniques, covering ideas such as centralized training with decentralized execution, value decomposition, parameter sharing, and self-play. The book comes with its own MARL codebase written in Python, containing implementations of MARL algorithms that are self-contained and easy to read. Technical content is explained in easy-to-understand language and illustrated with extensive examples, illuminating MARL for newcomers while offering high-level insights for more advanced readers.

First textbook to introduce the foundations and applications of MARL, written by experts in the field
Integrates reinforcement learning, deep learning, and game theory
Practical focus covers considerations for running experiments and describes environments for testing MARL algorithms
Explains complex concepts in clear and simple language
Classroom-tested, accessible approach suitable for graduate students and professionals across computer science, artificial intelligence, and robotics
Resources include code and slides


Détails
Prix : 86,00 $
Catégorie :
Auteur :  STEFANO V ALBRECHT & AL
Titre : Multi-Agent Reinforcement Learning: Foundations and Modern Approaches
Date de parution : 17 décembre 2024
Éditeur : MIT PRESS
Pages : 394
Sujet : Général
ISBN : 9780262049375 (0262049376)
Référence Renaud-Bray : 20123806
No de produit : 4212411

Multi-Agent Reinforcement Learning: Foundations and Modern Approaches , ALBRECHT, STEFANO V & AL
© MIT PRESS 2024
2001: A Space Odyssey (Special Edition) 12,99 $ Quantité : 1

30 jours au Groenland 34,95 $ Quantité : 1
1444 article(s) au panier.
Sous-total: 35 715,78 $
Renaud-Bray vous offre
les frais de livraison *