|
|
|
|
|
Trustworthy Machine Learning under Imperfect Data
Titre de l'éditeur : Trustworthy Machine Learning under Imperfect Data
BO HAN TONGLIANG LIU
|
|
|
EN SAVOIR PLUS
Résumé
The subject of this book centres around trustworthy machine learning under imperfect data. It is primarily designed for scientists, researchers, practitioners, professionals, postgraduates and undergraduates in the field of machine learning and artificial intelligence. The book focuses on trustworthy deep learning under various types of imperfect data, including noisy labels, adversarial examples, and out-of-distribution data. It covers trustworthy machine learning algorithms, theories, and systems.
The main goal of the book is to provide students and researchers in academia with an unbiased and comprehensive literature review. More importantly, it aims to stimulate insightful discussions about the future of trustworthy machine learning. By engaging the audience in more in-depth conversations, the book intends to spark ideas for addressing core problems in this topic. For example, it will explore how to build up benchmark datasets in noisy-supervised learning, how to tackle the emerging adversarial learning, and how to tackle out-of-distribution detection.
For practitioners in the industry, this book will present state-of-the-art trustworthy machine learning methods to help them solve real-world problems in different scenarios, such as online recommendation and web search. While the book will introduce the basics of knowledge required, readers will benefit from having some familiarity with linear algebra, probability, machine learning, and artificial intelligence. The emphasis will be on conveying the intuition behind all formal concepts, theories, and methodologies, ensuring the book remains self-contained at a high level.
Détails
|
Prix :
|
259,30 $
|
|
Catégorie :
|
|
|
Auteur :
|
BO HAN TONGLIANG LIU
|
|
Titre :
|
Trustworthy Machine Learning under Imperfect Data
|
|
Date de parution :
|
octobre 2025
|
|
|
|
|
|
Éditeur :
|
LIVRES NUMÉRIQUES DIVERS
|
|
|
|
|
|
Sujet :
|
NUL DIVERS
|
|
ISBN :
|
9789819693962 (9819693969)
|
|
Référence Renaud-Bray :
|
4528115
|
|
|
|
No de produit :
|
4528115
|
Droits numériques
|
Format :
|
EPUB
|
|
Disponibilité :
|
Canada,
consultez la liste des pays autorisés.
Trustworthy Machine Learning under Imperfect Data
De
HAN , BO*LIU , TONGLIANG
ANDORRE
ÉMIRATS ARABES UNIS
ALBANIE
ARMÉNIE
ANTARCTIQUE
ARGENTINE
SAMOA AMÉRICAINES
AUTRICHE
AUSTRALIE
AZERBAÏDJAN
BOSNIE-HERZÉGOVINE
BARBADE
BELGIQUE
BURKINA FASO
BULGARIE
BAHREÏN
BURUNDI
BÉNIN
BERMUDES
BRUNÉI DARUSSALAM
BOLIVIE
BRÉSIL
BAHAMAS
BOUVET, ÎLE
BELIZE
Canada
CONGO, LA RÉPUBLIQUE DÉMOCRATIQUE DU
CONGO
SUISSE
CÔTE D'IVOIRE
COOK, ÎLES
CHILI
CAMEROUN
CHINE
COLOMBIE
COSTA RICA
CUBA
CAP-VERT
CHRISTMAS, ÎLE
CHYPRE
TCHÈQUE, RÉPUBLIQUE
ALLEMAGNE
DJIBOUTI
DANEMARK
DOMINIQUE
DOMINICAINE, RÉPUBLIQUE
ALGÉRIE
ÉQUATEUR
ESTONIE
ÉGYPTE
ESPAGNE
FINLANDE
FALKLAND, ÎLES (MALVINAS)
FÉROÉ, ÎLES
FRANCE
GABON
GRENADE
GÉORGIE
GUYANE FRANÇAISE
GIBRALTAR
GROENLAND
GUINÉE
GUADELOUPE
GUINÉE ÉQUATORIALE
GRÈCE
GUATEMALA
GUINÉE-BISSAU
GUYANA
HONG-KONG
HEARD, ÎLE ET MCDONALD, ÎLES
HONDURAS
CROATIE
HAÏTI
HONGRIE
INDONÉSIE
IRLANDE
ISRAËL
|
|
Gestion des droits numériques :
|
Adobe DRM
|
|
Entrepôt numérique :
|
NUMILOG
|
|
Nombre d'appareils autorisés :
|
3
|
|
Nombre de copier/coller :
|
0
|
|
Impression :
|
0
|
|
|
|
Trustworthy Machine Learning under Imperfect Data
,
HAN , BO*LIU , TONGLIANG
©
LIVRES NUMÉRIQUES DIVERS
2025
|
|
|