|
|
|
|
Can Mathematics Be Proved Consistent?
Titre de l'éditeur : Can Mathematics Be Proved Consistent?
JAN VON PLATO
|
|
EN SAVOIR PLUS
Résumé
Kurt Gödel (1906–1978) shook the mathematical world in 1931 by a result that has become an icon of 20th century science: The search for rigour in proving mathematical theorems had led to the formalization of mathematical proofs, to the extent that such proving could be reduced to the application of a few mechanical rules. Gödel showed that whenever the part of mathematics under formalization contains elementary arithmetic, there will be arithmetical statements that should be formally provable but aren’t. The result is known as Gödel’s first incompleteness theorem, so called because there is a second incompleteness result, embodied in his answer to the question "Can mathematics be proved consistent?"
This book offers the first examination of Gödel’s preserved notebooks from 1930, written in a long-forgotten German shorthand, that show his way to the results: his first ideas, how they evolved, and how the jewel-like final presentation in his famous publication On formally undecidable propositions was composed.The book also contains the original version of Gödel’s incompleteness article, as handed in for publication with no mentioning of the second incompleteness theorem, as well as six contemporary lectures and seminars Gödel gave between 1931 and 1934 in Austria, Germany, and the United States. The lectures are masterpieces of accessible presentations of deep scientific results, readable even for those without special mathematical training, and published here for the first time.
Détails
Prix :
|
77,56 $
|
Catégorie :
|
|
Auteur :
|
JAN VON PLATO
|
Titre :
|
Can Mathematics Be Proved Consistent?
|
Date de parution :
|
juillet 2020
|
|
|
Éditeur :
|
LIVRES NUMÉRIQUES DIVERS
|
|
|
Sujet :
|
NUL DIVERS
|
ISBN :
|
9783030508760 (3030508765)
|
Référence Renaud-Bray :
|
3224584
|
|
No de produit :
|
3224584
|
Droits numériques
Format :
|
PDF
|
Disponibilité :
|
Canada,
consultez la liste des pays autorisés.
Can Mathematics Be Proved Consistent?
De
VON PLATO , JAN
ANDORRE
ÉMIRATS ARABES UNIS
ARMÉNIE
ANTARCTIQUE
ARGENTINE
SAMOA AMÉRICAINES
AUTRICHE
AUSTRALIE
BOSNIE-HERZÉGOVINE
BARBADE
BELGIQUE
BULGARIE
BAHREÏN
BURUNDI
BERMUDES
BRUNÉI DARUSSALAM
BOLIVIE
BRÉSIL
BAHAMAS
BOUVET, ÎLE
BELIZE
Canada
SUISSE
COOK, ÎLES
CHILI
CHINE
COLOMBIE
COSTA RICA
CUBA
CHRISTMAS, ÎLE
CHYPRE
TCHÈQUE, RÉPUBLIQUE
ALLEMAGNE
DANEMARK
DOMINIQUE
DOMINICAINE, RÉPUBLIQUE
ALGÉRIE
ÉQUATEUR
ESTONIE
ÉGYPTE
ESPAGNE
FINLANDE
FALKLAND, ÎLES (MALVINAS)
FÉROÉ, ÎLES
FRANCE
GRENADE
GUYANE FRANÇAISE
GIBRALTAR
GROENLAND
GUADELOUPE
GRÈCE
GUATEMALA
GUYANA
HONG-KONG
HEARD, ÎLE ET MCDONALD, ÎLES
HONDURAS
CROATIE
HAÏTI
HONGRIE
INDONÉSIE
IRLANDE
ISRAËL
INDE
OCÉAN INDIEN, TERRITOIRE BRITANNIQUE DE
IRAN, RÉPUBLIQUE ISLAMIQUE D'
ISLANDE
ITALIE
JAMAÏQUE
JAPON
KENYA
KIRGHIZISTAN
CAMBODGE
COMORES
SAINT-KITTS-ET-NEVIS
CORÉE, RÉPUBLIQUE DE
CAÏMANES, ÎLES
|
Gestion des droits numériques :
|
Adobe DRM
|
Entrepôt numérique :
|
NUMILOG
|
Nombre d'appareils autorisés :
|
3
|
Nombre de copier/coller :
|
0
|
Impression :
|
0
|
|
|
Can Mathematics Be Proved Consistent?
,
VON PLATO , JAN
©
LIVRES NUMÉRIQUES DIVERS
2020
|
|
|