LIVRES JEUNESSEBÉBÉJEUX, JOUETSPAPETERIECADEAUXDIVERTISSEMENT


Message Important
Le site sera temporairement en maintenance, pour une mise à jour. Ceci afin de mieux vous servir.
Heure de maintenance prévue : 10:30 pm

Important message
The site will be busy updating the store for you and will be back shortly.
Scheduled maintenance : 10:30 pm
LIVRES NUMÉRIQUES
Bankruptcy Prediction through Soft Computing based Deep Learning Technique - ARINDAM CHAUDHURI - SOUMYA K GHOSH

Bankruptcy Prediction through Soft Computing based Deep Learning Technique

Titre de l'éditeur : Bankruptcy Prediction through Soft Computing based Deep Learning

ARINDAM CHAUDHURI
SOUMYA K GHOSH

 
108,60 $
Feuilleter Feuilleter
Ajouter à ma liste de souhaits
EN SAVOIR PLUS Résumé

This book proposes complex hierarchical deep architectures (HDA) for predicting bankruptcy, a topical issue for business and corporate institutions that in the past has been tackled using statistical, market-based and machine-intelligence prediction models. The HDA are formed through fuzzy rough tensor deep staking networks (FRTDSN) with structured, hierarchical rough Bayesian (HRB) models. FRTDSN is formalized through TDSN and fuzzy rough sets, and HRB is formed by incorporating probabilistic rough sets in structured hierarchical Bayesian model. Then FRTDSN is integrated with HRB to form the compound FRTDSN-HRB model. HRB enhances the prediction accuracy of FRTDSN-HRB model. The experimental datasets are adopted from Korean construction companies and American and European non-financial companies, and the research presented focuses on the impact of choice of cut-off points, sampling procedures and business cycle on the accuracy of bankruptcy prediction models.

The book also highlights the fact that misclassification can result in erroneous predictions leading to prohibitive costs to investors and the economy, and shows that choice of cut-off point and sampling procedures affect rankings of various models. It also suggests that empirical cut-off points estimated from training samples result in the lowest misclassification costs for all the models. The book confirms that FRTDSN-HRB achieves superior performance compared to other statistical and soft-computing models. The experimental results are given in terms of several important statistical parameters revolving different business cycles and sub-cycles for the datasets considered and are of immense benefit to researchers working in this area.


Détails
Prix : 108,60 $
Catégorie :
Auteur :  ARINDAM CHAUDHURI
SOUMYA K GHOSH
Titre : Bankruptcy Prediction through Soft Computing based Deep Learning Technique
Date de parution : décembre 2017
Éditeur : LIVRES NUMÉRIQUES DIVERS
Sujet : NUL DIVERS
ISBN : 9789811066832 (9811066833)
Référence Renaud-Bray : 2452439
No de produit : 2452439
Droits numériques
Format : EPUB
Disponibilité : Canada, consultez la liste des pays autorisés.
Gestion des droits numériques : Adobe DRM
Entrepôt numérique : NUMILOG
Nombre d'appareils autorisés : 3
Nombre de copier/coller : 0
Impression : 0

SUGGESTIONS
Suggestions
ALLUME-CIGARETTE DE LA CHRYSLER NOIRE(l') BOUCHARD, SERGE
18,99 $
ALLUME-CIGARETTE DE LA CHRYSLER NOIRE(l') BOUCHARD, SERGE
18,99 $
Détresse et l'enchantement(La) 3e Ed. ROY, GABRIELLE
14,99 $
Bankruptcy Prediction through Soft Computing based Deep Learning Technique , CHAUDHURI , ARINDAM*GHOSH , SOUMYA K
© LIVRES NUMÉRIQUES DIVERS 2017