LIVRES JEUNESSEBÉBÉJEUX, JOUETSPAPETERIECADEAUXDIVERTISSEMENT


Message Important
Le site sera temporairement en maintenance, pour une mise à jour. Ceci afin de mieux vous servir.
Heure de maintenance prévue : 10:30 pm

Important message
The site will be busy updating the store for you and will be back shortly.
Scheduled maintenance : 10:30 pm
LIVRES NUMÉRIQUES
Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks - JONGEUN CHOI - SARAT DASS - YUNF MAITI

Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks

Titre de l'éditeur : Bayesian Prediction and Adaptive Sampling Algorithms for Mobile

JONGEUN CHOI
SARAT DASS
YUNF MAITI

 
73,03 $
Feuilleter Feuilleter
Ajouter à ma liste de souhaits
EN SAVOIR PLUS Résumé

This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.

Détails
Prix : 73,03 $
Catégorie :
Auteur :  JONGEUN CHOI
SARAT DASS
YUNF MAITI
Titre : Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks
Date de parution : octobre 2015
Éditeur : LIVRES NUMÉRIQUES DIVERS
Sujet : NUL DIVERS
ISBN : 9783319219219 (3319219219)
Référence Renaud-Bray : 2183683
No de produit : 2183683
Droits numériques
Format : PDF
Disponibilité : Canada, consultez la liste des pays autorisés.
Gestion des droits numériques : Adobe DRM
Entrepôt numérique : NUMILOG
Nombre d'appareils autorisés : 3

SUGGESTIONS
Suggestions
Une vie sans peur et sans regret BOMBARDIER, DENISE
25,99 $
Détresse et l'enchantement(La) 3e Ed. ROY, GABRIELLE
14,99 $
Détresse et l'enchantement(La) 3e Ed. ROY, GABRIELLE
14,99 $
Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks , CHOI , JONGEUN*DASS , SARAT*MAITI , YUNF
© LIVRES NUMÉRIQUES DIVERS 2015