LIVRES JEUNESSEBÉBÉJEUX, JOUETSPAPETERIECADEAUXDIVERTISSEMENT


Message Important
Le site sera temporairement en maintenance, pour une mise à jour. Ceci afin de mieux vous servir.
Heure de maintenance prévue : 10:30 pm

Important message
The site will be busy updating the store for you and will be back shortly.
Scheduled maintenance : 10:30 pm
LIVRES NUMÉRIQUES
Model-Free Prediction and Regression - DIMITRIS N. POLITIS

Model-Free Prediction and Regression

Titre de l'éditeur : Model-Free Prediction and Regression

DIMITRIS N. POLITIS

 
119,20 $
Feuilleter Feuilleter
Ajouter à ma liste de souhaits
EN SAVOIR PLUS Résumé

The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.

Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.

Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.


Détails
Prix : 119,20 $
Catégorie :
Auteur :  DIMITRIS N. POLITIS
Titre : Model-Free Prediction and Regression
Date de parution : novembre 2015
Éditeur : LIVRES NUMÉRIQUES DIVERS
Sujet : NUL DIVERS
ISBN : 9783319213477 (3319213474)
Référence Renaud-Bray : 2146905
No de produit : 2146905
Droits numériques
Format : PDF
Disponibilité : Canada, consultez la liste des pays autorisés.
Gestion des droits numériques : Adobe DRM
Entrepôt numérique : NUMILOG
Nombre d'appareils autorisés : 3

SUGGESTIONS
Suggestions
Une vie sans peur et sans regret BOMBARDIER, DENISE
25,99 $
Détresse et l'enchantement(La) 3e Ed. ROY, GABRIELLE
14,99 $
Détresse et l'enchantement(La) 3e Ed. ROY, GABRIELLE
14,99 $
Model-Free Prediction and Regression , POLITIS , DIMITRIS N.
© LIVRES NUMÉRIQUES DIVERS 2015